
SHIFTLEFT

Maintainer insight | Risk Quantification



• Developing and enabling a Swedish Commercial Cyber Defense
• Protect Swedish Critical Infrastructure and Critical Industry
• Development of Strategic Initiatives and Capabilities

CPARTA



• Strategic Coordinator Cparta
• Team Capt. Swedish National Hacking Team
• Vulnerability Research Margin Research

About Me



Analysis of motivation and 
intentions

Quality assurance and 
compliancy

Weakest link and risk 
assessment



Analysis of motivation and 
intentions

Contributor metadata 
analysis & code analysis



Contributor metadata 
analysis



Contributor metadata 
analysis & code analysis



Contributor metadata 
analysis & code analysis

By which metrics do 
we quantify code 
quality?



SHIFTLEFT Maintainer 
overview of contributors



C code from 1997
With critical FIXMEs



Reagent – Margin Research



SHIFTLEFT Maintainer 
overview of dependencies



SHIFTLEFT Maintainer
Weakest Link Risk identification



SHIFTLEFT Maintainer Continuous
Quality & Risk Report



Metrics of "good" code &
Metrics of "trusted" contributor

• Issues generated / LoC (vulnerability does not require malicious intent)
• AI code quality assessment (Lack of maintenance)
• Graph based contribution analysis (Behaviour & Intent)



Metrics of "good" code &
Metrics of "trusted" contributor

• Bug transmission project-to-project adoption
o e.g. Glibc stealing Musl code with bugs in them

• AI analysis of "Does this commit only solve the issue?"
o Hidden introductions of features / vulnerabilties

• Analysis of "Does this code alter the scope of access"
o Accessing new resources



-*- Read comments from end of lifetime to start of lifetime. -*-

// Usage implies proof is necessary: assert N <= direction <= E
void foobar(enum Direction direction) {
switch (direction) {
case N: ...
case W: ...
case E: ...
// switch case has holes in enumeration coverage. Proof state: assert N <= direction <= E

 }
// End of lifetime of direction. 

}

void karbar() {
// Bug is found since there exists no proof for assert N <= direction
// end of life for direction, sink point in syscall assumes no bounding

enum Direction direction = … // user input

// Proof state: assert N <= direction

if (direction <= E) { System.exit(0); }
// Code path not reachable for direction > E. Satisfies iff assert N <= direction

foobar(direction) // on call-site needs to prove: “assert N <= direction <= E”
}



Lean proof state – challenge to communicate to 
maintainer. Needs to be intuitive



• Imperial College London teaching lean for 
formal proofs

• Integrating formal proofs in to language design
• In an intuitive way using AlphaProof et.c

• Theorem proving is already a part of industry
• PLC industrial systems
• Proof of soundness for cryptocurrencies 

(Zellic et al.)



Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

