
Debricked
Anton Duppils and Magnus Tullberg
anton.duppils@gmail.com and magnus.tullberg@gmail.com

mailto:anton.duppils@gmail.com
mailto:magnus.tullberg@gmail.com

Who are we?
● Lead Data Engineers at Debricked
● Computer Science - Security @LTH
● Master Thesis at Debricked 2019

- Detect undisclosed vulnerabilities on GitHub

What is Debricked?
Software Composition Analysis (SCA) tool

● Vulnerability
● License
● Health
● Policies

https://debricked.com/

Debricked Journey
● Research project from LTH, a vinnova backed project – SECONDS

https://www.vinnova.se/en/p/seconds-securing-connected-devices/

● An explosion in open source projects and new vulnerabilities
● Focus shift to provide solutions to vulnerability and license management

for the growing use of open source.

https://www.vinnova.se/en/p/seconds-securing-connected-devices/

What we’ve done - Part 1/3
● Rule Engine

- Heuristic based vulnerability matching

● Data Lake

● Security Entity Classification
- Detect undisclosed vulnerabilities via ML on version control data

● File fingerprinting
- Match existing open source in your project

What we’ve done - Part 2/3
● Open Source Health

- Metrics on open source projects
- Master Thesis on finding right metrics
- Master Thesis on what’s important to devs

What we’ve done - Part 2/3
● Open Source Health

- Metrics on open source projects

● Open Source Dependency Graph
- Approximate PM resolution
- Vulnerability fix recommendation

What we’ve done - Part 2/3
● Open Source Health

- Metrics on open source projects

● Open Source Dependency Graph
- Approximate PM resolution
- Vulnerability fix recommendation

● Open Source Select
- Search engine for open source

What we’ve done - Part 3/3
● Vulnerable Functionality

- Detect vulnerable code via version diff

What we’ve done - Part 3/3
● Vulnerable Functionality

- Detect vulnerable code via version diff

● Vulnerability Reachability Analysis
- Check reachability statically for vulnerable functionality

What we’ve done - Part 3/3
● Vulnerable Functionality

- Detect vulnerable code via version diff

● Vulnerability Reachability Analysis
- Check reachability statically for vulnerable functionality

● ARVOS
- Check reachability dynamically for vulnerable functionality

Has been a focus since early 2022

(we called it StartLeft, but ShiftLeft sounds cooler)

Policies - collection of rules

● If dependency has vulnerability severity (CVSS) >= 5 → FAIL
● If dependency has risky license use case → FAIL
● If dependency has very low health score or end-of-life → WARNING

Shifting Left at Debricked (1/2)

Shifting Left at Debricked (2/2)
How can problematic open source use be detected earlier?

● Search engine - OSS search based on health metrics
● Chrome extension - searching on e.g. npm or Github
● IDE integration - e.g. mark on import
● CI/CD - warn/fail pipeline
● Monitoring - detecting issues on branches - not developer centric

Search url: https://debricked.com/select?license=GPL-2.0-or-later&package-manager=golang&slp-scope=r_46940

https://debricked.com/select?license=GPL-2.0-or-later&package-manager=golang&slp-scope=r_46940

Thank you for listening!
With the lack of time, feel free to reach out if you have any questions.

Thank you for inviting us to be a part of this exciting project! :)

	Debricked
	Who are we?
	What is Debricked?
	Debricked Journey
	What we’ve done - Part 1/3
	What we’ve done - Part 2/3
	What we’ve done - Part 2/3 (2)
	What we’ve done - Part 2/3 (3)
	What we’ve done - Part 3/3
	What we’ve done - Part 3/3 (2)
	What we’ve done - Part 3/3 (3)
	Shifting Left at Debricked (1/2)
	Shifting Left at Debricked (2/2)
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Thank you for listening!

