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What version of Java is used in Android ?
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What version of Java is used in Android ?

▶ Java Class Library:

• Android applications can be written in Java and compiled into Dalvik bytecode1

• The Java classes (like java.lang.string) at the Core for interpretation and execution
(Runtime or Android RT), are grouped in a component called libcore.

▶ OpenJDK

• Since Android 7 (2016), switch from Apache Harmony (Google had to maintain since 2011)
for OpenJDK.

1Now Optimized Dex and compiled AOT
T.Riom, A.Bartel Shiftleft Android’s JCL Analysis 3 / 14



4/14

What version of Java does Android uses ?

▶ OpenJDK change of release and lifecycle policy in 2018

LTS Versions End of Active Support End of support Security Updates

OpenJDK-1.71 - June 2020
OpenJDK-1.81 - November 2026
OpenJDK-111 - October 2024
OpenJDK-17 October 2027 Septembre 2029
OpenJDK-21 December 2029 -

1Red Hat stewardship
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We asked around:

▶ ChatGPT

• How can I reach the same conclusion?

▶ StackOverflow
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RQ1: Which OpenJDK versions are used in Android’s libcore? How much
do they diverge from the OpenJDK upstream? (1/2)

▶ # Classes: Android 7: 1200 up to Android 13 >2000

▶ We compute the distance (tlsh unittest) between one Java Class in
libcore and all OpenJDKs’ versions of the same class.
• Selection of closest version • Oldest version selected

▶ We observe first that overall the distance with OpenJDK increases over
versions.
▶ More and more Android customisation
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RQ1: Which OpenJDK versions are used in Android’s libcore? ... (2/2)
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RQ2: How have OpenJDK vulnerabilities been managed in libcore? (1/2)

▶ Methodology:

• Retrieve all 82 OpenJDK CVEs from NVD feeds
• Gather the CVE patching commits
• List files patched in OpenJDK
• Detect when patched in OpenJDK
• List files present in Android
• Detect when patched in libcore

▶ We consider CVEs if and only if all files are present in libcore

▶ 78% of OpenJDK CVEs for which files in the patch are never present in
libcore (63 CVEs)

▶ 80.5% of OpenJDK’s CVEs are not fully present in libcore (66 CVEs)
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RQ2: How have OpenJDK vulnerabilities been managed in libcore? (2/2)

▶ Over-Exposure1

• 13 cases over-exposures found
• 8 CVEs still unpatched in master (24th March 20232).

1Patched in OpenJDK and not in Android
2Google notified in April 2023
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What is Google doing: Expected Upstream (1/2)

▶ Android is currently working on the OpenJDK update issue

• In Sept. 2021: Google automates updates through the Expected Upstream file.

• Slow rebase of libcore classes on latest OpenJDK versions

→ First class updated to OpenJDK-17 in February 2022 (GA Sept.21).

June 2024: 1608 over around 2600 classes.

→ Oct 23: 48 classes updated to JDK-21 —— Oct 24: 1239

→ Still 128 classes based on JDK-7, 378 on JDK-11
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What is Google doing: Expected Upstream (2/2)

<destination path in ojluni> <upstream release version/git-tag> <source path in the upstream repo>

On a few cases we have a difference with Expected Upstream

BUT we manually confirmed our results as the class in ojluni regresses to look like an

the tlsh version.
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RQ3: What is the security impact of OpenJDK CVEs affecting Android?

▶ Over the 16 vulnerabilities for which the files are ever present in libcore:

• 3 CVEs depend on the JVM → unexploitable on Android

• 10/13 CVEs affect mostly Availability, 3 affect Integrity and 1 Confidentiality

• We informed Google and provided all our code and data1.

▶ They can fairly hope that their Expected Upstream project will naturally
update vulnerable files early enough.

1as of May 2023
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CVE-2022-21340

▶ Exploit for CVE-2022-21340 (CVSS 5.3)

• We wrote a PoC causing the Denial of Service in OpenJDK-11
• Improper handling of attributes’ length in compressed .jar.
• The application using th same code causes a hang on Android 13

371 void read(Manifest.FastInputStream is, byte[] lbuf) throws

IOE {↪→
372 String name = null, value;

373 byte[] lastline = null;

375 int len;

376 while ((len = is.readLine(lbuf)) != -1) {

... ...

388 if (lbuf[0] == ' ') {

389 // continuation of previous line

... ...

398 lineContinued = true;

399 byte[] buf = new byte[lastline.length + len - 1];

400 System.arraycopy(lastline, 0, buf, 0,

lastline.length);↪→
401 System.arraycopy(lbuf, 1, buf, lastline.length, len

- 1);↪→
402 if (is.peek() == ' ') {

403 lastline = buf;

404 continue;

405 }

406 value = new String(buf, 0, buf.length,

UTF_8.INSTANCE);↪→
407 lastline = null;

408 } else {

... //new attribute

...

434 }

435 }

436 }
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Conclusion

▶ We found Android’s libcores to have a fragmented OpenJDK profile and that
even for Google, it is not necessarily easy to turn on automatical updates with
the upstream.

▶ We did not see a specific tracking of OpenJDKs CVEs. Only the
Expected Upstream process might catch-up with latest version and CVEs
patching.

▶ The exploitation of CVE-2022-21340 on Android 13 proves that OpenJDK
vulnerabilities have reached Android releases.

▶ All data, code and results are available on github1

thank you for listening, eager to answer your questions :-)

1https://github.com/software-engineering-and-security/AndroidsJCL-SecDev23
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Appendix 1: TLSH

▶ Trendmicro’s Locally Sensitive Hashing

▶ Sliding window of 5 bytes - repartition in
quartile buckets -> digest

▶ Distance is provided throug Hamming
distance derivative between 2 digests.

▶ Adopted by VirusTotal, Malware Bazaar,
Threat Information eXpression (STIX)
2.1
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Appendix 2: Selecting the latest version for Android 13
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Appendix 3: Distance from Libcore to OpenJDK
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Appendix 4: Expected Upstream does not invalidate tlsh results

▶ tlsh provides results for before the existence of the Expected Upstream file.

▶ On Android-13, manual investigation show that the customization of OpenJDK classes in
Libcore usually make these classes closer to tlsh version, than the one pointed by the
Expected Upstream file.
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Appendix 5: Google policy
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Appendix 6: License Background - Harmony, Java and OpenJDK

▶ In 2011, Apache dropped effort on Harmony as IBM stopped depending on it.

▶ Oracle sued Google for copyright infrigement over ”similar method headers” over 37
packages

▶ The Supreme Court stated, eventually in 2021, that it was ’fair use’ (i.e. you cannot
patent the header of a method that describes what the method intents to do). ▶ no
issue over 2011-2016.

▶ The 2016 switch protects both Google Java code and applications developpers to
own their code through the Classpath exception (no royalties to Oracle) and escape
GPLv2’s Copyleft.

▶ Android escapes the Java trap by never executing Java bytecode but Dalvik bytecode
in their own VM/Runtime.
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Exploit CVE-2022-21340
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