
1/14

An In-Depth Analysis of Android’s Java Class
Library: its Evolution and Security Impact

Timothé Riom, Alexandre Bartel

Software Engineering and Security
Ume̊a Universitet

this work has been supported by Kempestiftelserna
T.Riom, A.Bartel Shiftleft Android’s JCL Analysis 1 / 14

2/14

What version of Java is used in Android ?

T.Riom, A.Bartel Shiftleft Android’s JCL Analysis 2 / 14

3/14

What version of Java is used in Android ?

▶ Java Class Library:

• Android applications can be written in Java and compiled into Dalvik bytecode1

• The Java classes (like java.lang.string) at the Core for interpretation and execution
(Runtime or Android RT), are grouped in a component called libcore.

▶ OpenJDK

• Since Android 7 (2016), switch from Apache Harmony (Google had to maintain since 2011)
for OpenJDK.

1Now Optimized Dex and compiled AOT
T.Riom, A.Bartel Shiftleft Android’s JCL Analysis 3 / 14

4/14

What version of Java does Android uses ?

▶ OpenJDK change of release and lifecycle policy in 2018

LTS Versions End of Active Support End of support Security Updates

OpenJDK-1.71 - June 2020
OpenJDK-1.81 - November 2026
OpenJDK-111 - October 2024
OpenJDK-17 October 2027 Septembre 2029
OpenJDK-21 December 2029 -

1Red Hat stewardship
T.Riom, A.Bartel Shiftleft Android’s JCL Analysis 4 / 14

5/14

We asked around:

▶ ChatGPT

• How can I reach the same conclusion?

▶ StackOverflow

T.Riom, A.Bartel Shiftleft Android’s JCL Analysis 5 / 14

6/14

RQ1: Which OpenJDK versions are used in Android’s libcore? How much
do they diverge from the OpenJDK upstream? (1/2)

▶ # Classes: Android 7: 1200 up to Android 13 >2000

▶ We compute the distance (tlsh unittest) between one Java Class in
libcore and all OpenJDKs’ versions of the same class.
• Selection of closest version • Oldest version selected

▶ We observe first that overall the distance with OpenJDK increases over
versions.
▶ More and more Android customisation

T.Riom, A.Bartel Shiftleft Android’s JCL Analysis 6 / 14

7/14

RQ1: Which OpenJDK versions are used in Android’s libcore? ... (2/2)

T.Riom, A.Bartel Shiftleft Android’s JCL Analysis 7 / 14

8/14

RQ2: How have OpenJDK vulnerabilities been managed in libcore? (1/2)

▶ Methodology:

• Retrieve all 82 OpenJDK CVEs from NVD feeds
• Gather the CVE patching commits
• List files patched in OpenJDK
• Detect when patched in OpenJDK
• List files present in Android
• Detect when patched in libcore

▶ We consider CVEs if and only if all files are present in libcore

▶ 78% of OpenJDK CVEs for which files in the patch are never present in
libcore (63 CVEs)

▶ 80.5% of OpenJDK’s CVEs are not fully present in libcore (66 CVEs)

T.Riom, A.Bartel Shiftleft Android’s JCL Analysis 8 / 14

9/14

RQ2: How have OpenJDK vulnerabilities been managed in libcore? (2/2)

▶ Over-Exposure1

• 13 cases over-exposures found
• 8 CVEs still unpatched in master (24th March 20232).

1Patched in OpenJDK and not in Android
2Google notified in April 2023

T.Riom, A.Bartel Shiftleft Android’s JCL Analysis 9 / 14

10/14

What is Google doing: Expected Upstream (1/2)

▶ Android is currently working on the OpenJDK update issue

• In Sept. 2021: Google automates updates through the Expected Upstream file.

• Slow rebase of libcore classes on latest OpenJDK versions

→ First class updated to OpenJDK-17 in February 2022 (GA Sept.21).

June 2024: 1608 over around 2600 classes.

→ Oct 23: 48 classes updated to JDK-21 —— Oct 24: 1239

→ Still 128 classes based on JDK-7, 378 on JDK-11

T.Riom, A.Bartel Shiftleft Android’s JCL Analysis 10 / 14

11/14

What is Google doing: Expected Upstream (2/2)

<destination path in ojluni> <upstream release version/git-tag> <source path in the upstream repo>

On a few cases we have a difference with Expected Upstream

BUT we manually confirmed our results as the class in ojluni regresses to look like an

the tlsh version.

T.Riom, A.Bartel Shiftleft Android’s JCL Analysis 11 / 14

12/14

RQ3: What is the security impact of OpenJDK CVEs affecting Android?

▶ Over the 16 vulnerabilities for which the files are ever present in libcore:

• 3 CVEs depend on the JVM → unexploitable on Android

• 10/13 CVEs affect mostly Availability, 3 affect Integrity and 1 Confidentiality

• We informed Google and provided all our code and data1.

▶ They can fairly hope that their Expected Upstream project will naturally
update vulnerable files early enough.

1as of May 2023
T.Riom, A.Bartel Shiftleft Android’s JCL Analysis 12 / 14

13/14

CVE-2022-21340

▶ Exploit for CVE-2022-21340 (CVSS 5.3)

• We wrote a PoC causing the Denial of Service in OpenJDK-11
• Improper handling of attributes’ length in compressed .jar.
• The application using th same code causes a hang on Android 13

371 void read(Manifest.FastInputStream is, byte[] lbuf) throws

IOE {↪→
372 String name = null, value;

373 byte[] lastline = null;

375 int len;

376 while ((len = is.readLine(lbuf)) != -1) {

... ...

388 if (lbuf[0] == ' ') {

389 // continuation of previous line

... ...

398 lineContinued = true;

399 byte[] buf = new byte[lastline.length + len - 1];

400 System.arraycopy(lastline, 0, buf, 0,

lastline.length);↪→
401 System.arraycopy(lbuf, 1, buf, lastline.length, len

- 1);↪→
402 if (is.peek() == ' ') {

403 lastline = buf;

404 continue;

405 }

406 value = new String(buf, 0, buf.length,

UTF_8.INSTANCE);↪→
407 lastline = null;

408 } else {

... //new attribute

...

434 }

435 }

436 }

T.Riom, A.Bartel Shiftleft Android’s JCL Analysis 13 / 14

14/14

Conclusion

▶ We found Android’s libcores to have a fragmented OpenJDK profile and that
even for Google, it is not necessarily easy to turn on automatical updates with
the upstream.

▶ We did not see a specific tracking of OpenJDKs CVEs. Only the
Expected Upstream process might catch-up with latest version and CVEs
patching.

▶ The exploitation of CVE-2022-21340 on Android 13 proves that OpenJDK
vulnerabilities have reached Android releases.

▶ All data, code and results are available on github1

thank you for listening, eager to answer your questions :-)

1https://github.com/software-engineering-and-security/AndroidsJCL-SecDev23
T.Riom, A.Bartel Shiftleft Android’s JCL Analysis 14 / 14

https://github.com/software-engineering-and-security/AndroidsJCL-SecDev23

1/7

Appendix 1: TLSH

▶ Trendmicro’s Locally Sensitive Hashing

▶ Sliding window of 5 bytes - repartition in
quartile buckets -> digest

▶ Distance is provided throug Hamming
distance derivative between 2 digests.

▶ Adopted by VirusTotal, Malware Bazaar,
Threat Information eXpression (STIX)
2.1

T.Riom, A.Bartel Shiftleft Android’s JCL Analysis 1 / 7

2/7

Appendix 2: Selecting the latest version for Android 13

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

jdk1.5
5%

jdk1.6
20%

jdk1.7
7%

jdk1.8
22%

jdk-9
2%jdk-10 5%

jdk-11 1%

4%

jdk-13 4% jdk-14 6%
jdk-17

1%

jdk-18
16%

T.Riom, A.Bartel Shiftleft Android’s JCL Analysis 2 / 7

3/7

Appendix 3: Distance from Libcore to OpenJDK

-100

-50

 0

 50

 100

-100 -50 0 50 100

dist <= 10

dist <= 50

dist <= 100

dist <= 150

dist <= 200

dist <= 500

android-7

android-8

android-9

android-10android-11

android-12

android-13

master

T.Riom, A.Bartel Shiftleft Android’s JCL Analysis 3 / 7

4/7

Appendix 4: Expected Upstream does not invalidate tlsh results

▶ tlsh provides results for before the existence of the Expected Upstream file.

▶ On Android-13, manual investigation show that the customization of OpenJDK classes in
Libcore usually make these classes closer to tlsh version, than the one pointed by the
Expected Upstream file.

T.Riom, A.Bartel Shiftleft Android’s JCL Analysis 4 / 7

5/7

Appendix 5: Google policy

T.Riom, A.Bartel Shiftleft Android’s JCL Analysis 5 / 7

6/7

Appendix 6: License Background - Harmony, Java and OpenJDK

▶ In 2011, Apache dropped effort on Harmony as IBM stopped depending on it.

▶ Oracle sued Google for copyright infrigement over ”similar method headers” over 37
packages

▶ The Supreme Court stated, eventually in 2021, that it was ’fair use’ (i.e. you cannot
patent the header of a method that describes what the method intents to do). ▶ no
issue over 2011-2016.

▶ The 2016 switch protects both Google Java code and applications developpers to
own their code through the Classpath exception (no royalties to Oracle) and escape
GPLv2’s Copyleft.

▶ Android escapes the Java trap by never executing Java bytecode but Dalvik bytecode
in their own VM/Runtime.

T.Riom, A.Bartel Shiftleft Android’s JCL Analysis 6 / 7

7/7

Exploit CVE-2022-21340

T.Riom, A.Bartel Shiftleft Android’s JCL Analysis 7 / 7

	Appendix

